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Cryptanalysis of Short RSA 
Secret Exponents 

MICHAEL J. WIENER 

Abstract-A cryptanalytic attack on the use of short RSA secret 
exponents is described. The attack makes use of an algorithm based on 
continued fractions that finds the numerator and denominator of a 
fraction in polynomial time when a close enough estimate of the fraction 
is known. The public exponent e and the modulus p y  can be used to 
create an estimate of B fraction that involves the secret exponent d. The 
algorithm based on continued fractions uses this estimate to discover 
sufficiently short secret exponents. For a typical case where e < p 9 ,  
GCD(p - 1,q - 1) is small, and p and 9 have approximately the same 
number of bits, this attack will discover secret exponents with up to 
approximately one-quarter as many bits as the modulus. Ways to com- 
bat this attack, ways to improve it, and two open problems are de- 
scribed. This attack poses no threat to the normal case of RSA where the 
secret exponent is approximately the same size as the modulus. This is 
because this attack uses information provided by the public exponent 
and, in the normal case, the public exponent can be chosen almost 
independently of the modulus. 

I .  INTRODUCTION 

ROM THE SET of all key pairs for the RSA public- F key cryptosystem [5] ,  some key pairs have properties 
that can be exploited by various cryptanalytic attacks. 
Some attacks exploit weaknesses in the modulus, and 
others exploit weaknesses in the public exponent or the 
secret exponent. The weaknesses discussed here are those 
that allow an attack on RSA to be completed in a length 
of time that is polynomial in the length of the modulus. 

Attacks on the RSA modulus are aimed at discovering 
the two prime factors ( p  and 9) of the modulus. One 
such attack can be used to factor the modulus when the 
prime factors of either p - 1 or q - 1 are all small [3]. The 
modulus can also be factored when the prime factors of 
either p + 1 or q + 1 are all small [6]. There is a simple 
algorithm for factoring the modulus when the difference 
between the primes is bounded by G ( l o g p ) l '  for some 
constant k .  This algorithm is based upon the following 
identity: 

P + 9  P - 4  = [l) - P 9 = [ l ) .  

The modulus can be factored by finding ( p  + 4 ) / 2  and 
( p - q ) / 2 .  ( ( p + q ) / 2 ) '  can be found in a linear search 
through the perfect squares starting from the modulus. 
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The correct square is found when the difference between 
the square and the modulus is itself a perfect square. 

There are various attacks on RSA that require, among 
other conditions, either the public or secret exponent to 
be short. In some cases it may be desirable to use a 
shorter public or secret exponent because this reduces the 
encryption or decryption execution time. This is because, 
for a fixed modulus size, the RSA encryption or decryp- 
tion time is roughly proportional to the number of bits in 
the exponent. One situation where the use of short expo- 
nents is particularly advantageous is when there is a large 
difference in computing power between two communicat- 
ing devices. An example of this is when RSA is used in 
communications between a smart card and a larger com- 
puter. In this case, it would be desirable for the smart 
card to have a short secret exponent, and for the larger 
computer to have a short public exponent in order to 
reduce the processing required in the smart card. How- 
ever, one must be wary of short exponent attacks on RSA. 

Short public exponents can be exploited when the same 
message is broadcast to many parties [l]. To illustrate this 
attack, suppose that a message m is broadcast to three 
parties in which the public exponents are e ,  = e ,  = e3 = 3, 
and in which the moduli are n , ,  n,, and n3. The en- 
crypted messages are 

m3 mod n , ,  m 3  mod n,,  and m3 mod n,. 

Using the Chinese remainder theorem, one can find 
m'mod n,n,n,. However, m3 < n,n ,n ,  because m < 
n , ,  n,, n3. Therefore, m3 is not affected by being reduced 
modulo n,n,n,, and the message can be recovered by 
taking the cube root of m3. In this paper, an attack on 
short secret exponents is described. This attack is based 
upon continued fractions. 

I I .  CONTIN U ED FRACTIONS B ACKG ROUND 

Continued fractions can be used to find the numerator 
and denominator of a fraction when a close enough 
estimate of the fraction is known. This will be related to 
RSA in Section IV where the public exponent and modu- 
lus will be used to construct an estimate of a fraction 
involving the secret exponent. 

The algorithm for using continued fractions to find the 
numerator and denominator of a fraction given an esti- 
mate will be referred to here as the continued fraction 
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algorithm. This algorithm will be described in Section 111. 
A background in continued fractions for a discussion of 
the continued fraction algorithm is presented in this sec- 
tion. Further discussion of continued fractions can be 

n, and d , ,  i = 0,l; . ., m be a sequence of numerators and 
denominators defined as follows: 

n,  
- = ( q o ,  q l , .  . . , 4 , ) ,  GCD( n , ,  d ,  ) = 1, 

found in [2].  d ,  
A continued fraction is an expression of the form for i = O , I ; . . , m .  ( 5 )  

a1 It can be shown that 

=a,/(q1 +a,/(q*+a,/( . . . I(%- I +aan/q, , )  . ' . I ) ) .  
(1) 

We are interested in continued fractions that have all the 
a,'s in (1) equal to one. For convenience, let us define 

(411 2 41,. . 9 4 , n )  

= 90 + ' / ( q !  + ' / ( 4 2  + ' ' ' 4~77- I + ' /q,?I) ' ' ' >>) ' 

( 2 )  

For example, (0,2,1,3) =0+1/(2+1/(1+1/3))=4/11. 
(0,2,1,3) is called the continued fraction expansion of 
4/ 11. The continued fraction expansion of a positive 
rational number f is formed by subtracting away the 
integer part of f and repeatedly inverting the remainder 
and subtracting away the integer part until the remainder 
is zero. Let qi be the integer quotient and r, be the 
remainder at step i ,  and let m be the number of inversion 
steps: 

4 0 = 1 f l ,  r o = f - 4 0 >  and 

( 3 )  

Because r,, = 0, we have f =  (4 ( ) ,  ql; . ., q,,). There are 
two observations which can be made at this point that will 
be useful later on. The first is that 4,,, 2 2. This is true 
because q,,, = 1 implies that r,,, I = 1 which is impossible. 
The second is that for any x > 0, 

(40  9 41 9 .  . . ,4,,1) < (40,91,. ' . 3 9,,7 - I 9,,, + x) 5 

if m is even, 
( 4 0 , 4 1 , '  ' ' 7 q j n )  > ( q o 7 q 1 3 '  ' ' , q r n -  1 3 4,,7 + x > ,  

if m isodd. (4) 

This can be seen by looking at the number of levels of 
fraction nesting in (2). 

We will now consider how one would go about recon- 
structing f from its continued fraction expansion. Using 
(2) ,  f can be reconstructed by starting from 4,,, and 
adding and inverting at each step back to qfl .  However, it 
is useful to be able to reconstruct f starting from qO. Let 

do = 1, nfl = 407 

nl=ql)ql + I ,  d ,  = 4 1 7  

n ,  = q , n r P I  + u , - ~ ,  d ,  = q,d , - ,  + d r P 2 ,  
for i = 2 , 3 ; . . , m .  (6) 

In this way, the fraction f = n , , / d , ,  can be recon- 
structed. 

There is a relationship between the numerators and 
denominators that will be useful later on. It can be shown 
that 

n ,d , - l  - n r P l d ,  = - ( - l ) ' ,  for i = 1,2;. . , m .  ( 7 )  

Sufficient background in continued fractions has been 
presented for a discussion of the continued fraction algo- 
rithm. 

JIJ. CONTINUED FRACTION ALGORITHM 

Let f '  be an underestimate of f :  

f ' = f ( 1 - 6 ) ,  forsome 6 2 0 .  (8) 
Let q, ,r ,  and q,',r,' be the ith quotients and remainders 
of f and f '  respectively. If 6 is small enough, then the 
numerator and denominator of f can be found using the 
following algorithm. Repeat the following until f is found. 

Generate the next quotient (4,') of the continued 

Use (6) to construct the fraction equal to 
fraction expansion of f ' .  

( q h , q ; , . . . , q , ' - 1 , 4 , ' + l ) ,  if i iseven, 
if i is odd. (4 ;  9 41, ' . ' 9 4,'- I q,'), 

Check whether the constructed fraction is equal to f .  

The reason for adding one to even quotient values is that 
the guess of f should be larger than f ' ,  because f 2 f ' ,  
and it can be seen from (4) that (q(,,qi,. . . ,q, '-l,q, ') is 
less than f ' =  (qX,q; , . . . ,q:- l ,q, '  +r, ' ) .  Note that a test 
must exist to determine whether a guess of f is correct. 

The continued fraction algorithm will succeed if 

(407 41 ) .  . . 9 9,,1- I 7  4,,1 - 1) < f '  5 91 ) .  . . q,,I)> 
if m is even, 

(903 41  >. . ' > q,, - I 7 4171 + < f '  5 (40 9 41 7 ' ' ' , q,,,) 7 

if m is odd. (9) 

We will now consider the implications of (9) on the size of 
6. Solving (8) for 6 yields 

( 10) 
f '  
f '  

6 = 1 - -  
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Separate analyses will be done for the following cases: 
m = 0, m = 1 ,  m even and m 2 2, and m odd and m L 3. 

Using (9) to substitute for f ‘  in (10) yields 
Case I :  m = 0. 

6 < 1 - ( 4 0 - 1 ) / ( 4 0 ) .  (11)  
Using (21, this reduces to 6 < l /qO that can be rewritten 
as (recall that n o  = q0 and d,, = 1) 

1 
a<---. ( 12) 

n 0 4, 
Case 2: m = 1. 

Using (9) to substitute for f’ in (IO) yields 

< - (41) > 9 I + >/( 90 3 41 ). (13) 
Using (2) ,  this reduces to 

1 
S <  (14) 

(4041 + l ) ( q i  + 1, ’ 

It was shown earlier that q,, 2 2. This implies that for this 
case, ( 3 / 2 ) q 1  2 4 1  + 1. Combining this with (14) and the 
expressions for n ,  and d ,  in (6) yields that 

1 a < - -  3 

Because d,,, = 4,,,d,,,-, + d,,,-2 and q,,, 2 2, we have d,,, + 
d,,, - , I (3/2)d, , , .  Therefore, 

1 
a<------ 3 ( 2 2 )  

p d m  

is sufficient to guarantee the success of the continued 
fraction algorithm. 

Taking into account the results of all four cases, 
1 

a<- 3 ( 2 3 )  
p , , d , , ,  

is sufficient to guarantee the success of the continued 
fraction algorithm. Recall that a,, and d,,, are the numer- 
ator and denominator of f .  

Let us now consider the execution time of this algo- 
rithm. Let x = max(n,,,, d,?,). The number of quotients in 
the continued fraction expansion of f can be shown to be 
O(log x). For each quotient, a guess of f is generated and 
tested. The calculations required to generate each guess 
of f is polynomial in logx. Therefore, assuming that the 
test of whether the guess of f is correct in polynomial in 
log x, the continued fraction algorithm execution time is 
polynomial in log x. 

is sufficient to guarantee the success of the continued 
fraction algorithm. IV. CONTINUED FRACTION ALGORITHM APPLJED 

TO RSA Case 3: m even and m 2 2 .  
Using (9) to substitute for f ’  in (10) yields The following relationship between the public exponent 

e and the secret exponent d is given in 151: 
6 < 1 - (q,, 41 3 .  . . ,4,11- I q,,, - 1 > / ( 4 0 , 4 ,  > .  . . , 4 ,n ) .  (16) 

(24) ed = 1 (mod LCM( p - 1,4 - 1 ) ) .  

This relationship is necessary for exponentiation with the 
public exponent and secret exponent to be inverses of 
each other. From (24), there must exist an integer K such 

Using (6), we have 

(4,,-1)n,,-, +n,r,-z and 

(4 , , , -W, , - I+d , , -2  
(907 41 3 .  ’ ’ , ~ I T Z -  I ,  91, - = 

Substituting these expressions into (16) yields 

Using (7) and the expressions for n,, and d,, in (6) yields 

Therefore, 

is sufficient to guarantee the success of the continued 
fraction algorithm. 

Performing a similar analysis to the one in case 3 yields 
Case 4: m odd and m 2 3. 

1 
6 <  (21) 

n,,,( d,,, + d,,, - I ) . 

If we let G = G C D ( p  - l , q  - 1) and use the fact that 
L C M ( p  - l , q  - 1) = ( p  - l)(q - 1)/G, we get 

K 
G 

ed = - ( p - 1) ( q - 1) + 1. 

It is possible for K and G to have common factors. Let us 
define k = K / CCD( K ,  G) and g = G / GCD( K ,  GI. Then 
k / g =  K / G ,  and G C D ( k , g ) = l .  We now have 

k 

g 
ed = -( y - l ) ( q  -1) + 1. (27) 

Dividing through by dp4 in (27) gives 
g 

e k  k 
p + 4 - 1 - -  

. ( 2 8 )  - = - ( 1 - 6) ,  where 6 = 

Note that e / p 4  consists entirely of public information 
and is a close underestimate of k / d g .  Before invoking 
the continued fraction algorithm, we must remember that 

P4 dg P4 
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this algorithm always finds fractions in lowest terms. From 
(25) ,  we see that G C D ( K , d )  = 1. Because k divides K ,  
we have G C D ( k ,  d )  = 1 .  Also, G C D ( k ,  g) = 1 by defini- 
tion. Therefore, G C D ( k ,  d g )  = 1, and the continued frac- 
tion algorithm can be used to find k and dg as long as 6 
is small enough. 

Using the expression for 6 in (28) and the restriction on 
6 in (23), it can be shown that 

(29) 
P9 

kdg < 3 
T ( P + d  

is sufficient to allow k and dg to be found. Note that 
( - 1 - g / k )  in the expression of 6 was dropped because 
it is small compared to ( p  + q) .  This does not affect the 
validity of (29) because ( -  1 - g / k )  serves to reduce the 
size of 6. 

We will now consider how one could test whether a 
guess of k and dg is correct. In order to simplify this test, 
we will assume that ed > pq .  This is not a particularly 
restrictive assumption because when either e or d is fixed, 
the expected value of the other is approximately p q / G  
(recall that G = G C D ( p  - 1, q - 1)). Unless G is chosen 
to be large, it is very likely that ed > pq. From (271, a 
consequence of ed > pq is that k > g. By rewriting (27) as 

edg = k (  p - l ) ( q  - 1) + g (30) 
we see that dividing edg by k yields a quotient of ( p  - 
l ) (q  - 1) and a remainder of g as long as k > g. This 
provides a guess of ( p  - l)(q - 1) and of g. If the guess of 
( p  - l ) (q  - 1) is zero, then k and dg are wrong. This case 
must be filtered out at this point or the remainder of this 
test will succeed in factoring p q  into 1 and pq. The guess 
of ( p  - 1Xq - 1) can be used to create a guess of ( p  + q)/2 
using the following identity: 

( 3 1 )  
P4 - (  P - 1 ) ( 4  - 1) + 1 - P + 4 

-- 

2 2 

If the guess of ( p  + q)/2 is not an integer, then the guess 
of k and dg is wrong. The guess of ( p  + q)/2 can be used 

to create a guess of ( ( p  - q)/2)' using the following 
identity: 

If the guess of ( ( p  - 4)/2)2 is a perfect square, then 
the original guess of k and dg is correct. The secret 
exponent d can be found by dividing dg by g. Recall that 
g was the remainder when edg was divided by k .  We can 
also recover p and q easily from ( p  + q)/2 and ( p  - q)/2. 

If nothing special is done to combat this continued 
fraction attack on RSA, then one can expect g to be 
small, and k < dg. Under these conditions, we can see 
from (29) that secret exponents with up to approximately 
one-quarter as many bits as the modulus can be found in 
polynomial time. This attack cannot be extended to the 
normal case where the secret exponent is approximately 
the same size as the modulus because it relies on the 
public exponent providing information to help factor the 
modulus and, in the normal case, the public exponent can 
be chosen almost independently of the modulus. 

V. AN EXAMPLE 

In this section, the continued fraction algorithm will be 
applied to a small RSA key pair. For this example 

pq=8927 and e=2621.  

A continued fraction expansion is performed on e / p q  = 

2621/8927 in Table I. The continued fraction attack on 
RSA for this example yields 

d = 5 ,  p = 1 1 3 ,  q = 7 9 ,  k = 3 ,  and g = 2 .  

One can verify that (27) is satisfied for these values to 
see that d = 5 is the secret exponent corresponding to 
e = 2621. One can also verify that the sufficient condition 
for the success of this algorithm (29) is satisfied. 

This example illustrates the details of the continued 
fraction attack on RSA, but it is useful to consider a more 
realistic case. Suppose that a 1024-bit modulus is used for 
RSA. Then p and q are approximately 2"'. Suppose that 
g =  2, and that e = p q  so that k = dg (see (28)). Then 

TABLE I 
Calculated Quantity How it is Derived i = 0  i = l  j = 2  

Guess of cdg 
Guess of ( p  - l)(q - 1) 

Guess of g 
Guess of ( 1 1  + 4 ) / 2  

Guess of ( ( p  - q)/2)' 
d 

See (6) 

0 
262 1 

8927 
0 

1 

1 

1 

262 1 
2621 

0 
3153.5 
(quit) 

~ 

- 

- 

3 
1064 

262 I 
1 

3 

1 

3 

7863 
7863 

0 
532.5 
(quit) 

__ 

~ 

- 

2 
493 

1064 
2 

7 

3 

10 

262 10 
X736 

2 
96 

289 = 17' 
5 

__ 

- 

- 
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using (29), we see that the continued fraction attack will 
find secret exponents up to a size of approximately 2'". 

VI. COMBATTING THL CONI I N U E D  FKACTION 
ATTACK ON RSA 

There are two ways of reducing the maximum size of 
secret exponent that can be found using the continued 
fraction attack on RSA. From (29), we can see that these 
are to make k larger and to make g larger. 

To make k larger, one must make the public exponent 
e larger (see (27)). This can be done by adding a multiple 
of L C M ( p  - 1, q - 1) to e. Suppose that e > (pq ) '  '. This 
implies that k / d g  > (pq)".' (see (28)). Substituting k = 

dg(pq)"' into (29) leads to d < 1. Therefore, if e > ( p q ) ' . 5 ,  
the continued fraction algorithm is not guaranteed to 
work for any size of secret exponent. Increasing the size 
of e has the disadvantage that it increases the execution 
time of public key encryption. But this may be acceptable 
in some systems. 

To make g larger, p and q must be chosen such that 
G C D ( p  - 1, q - 1) is large. However, we will see later that 
there are ways to find g or factors of g under certain 
conditions. 

VII. IMPROVEMENTS TO THE ATTACK ON RSA 

In this section, four possible improvements to the at- 
tack on short secret exponents will be discussed. The first 
improvement is to allow the continued fraction algorithm 
to continue searching for d slightly beyond the limit of 
(29). The algorithm is only guaranteed to work up to this 
limit, but it may work slightly beyond the limit. This may 
add a bit or so to the size of secret exponent that can be 
found. 

The second improvement is based upon the observation 
that the denominator of e / p q  (which is the underesti- 
mate of k / d g )  is simply an overestimate of ( p  - l)(q - 1). 
A closer estimate of ( p  - l)(q - 1) is 

[(fi - q2] ' 

Using this estimate, (29) becomes 

This increases the size of secret exponents that can be 
found. The amount of improvement increases as Ip - q1 
decreases. 

The third improvement to the continued fraction attack 
on RSA is to perform the algorithm on many guesses of 
k / d g .  One might start at some initial guess and then try 
successively larger guesses. In this way, one would be 
performing a linear search for k / & .  For secret expo- 
nents up to the limit of (29), the algorithm takes polyno- 
mial time. As the secret exponent increases in size beyond 
this limit, the number of times that the algorithm must be 
performed increases exponentially. 

The fourth improvement is to attempt to find g or 
factors of g. Suppose that t is known to be a factor of g. 
Then one could use 

k 
as an underestimate of - 

In this case (29) becomes 

This increases the size of d that can be found by a factor 
of t .  We now need a way to find factors of g. Because g 
divides GCD( p - 1, q - l), g divides both p - 1 and q - 1. 
This means that g also divides pq - 1 because 

pq -1  = ( p  - l ) ( q  - 1)  + ( p  -1) + ( q  -1).  
One may be able to find factors of g by factoring 

p q - 1 .  If g is chosen to be large and all of the prime 
factors of g are large, then it may be difficult to find 
factors of g by factoring pq  - 1. However, if g is so large 
that ( p  - l) /g and ( q  - l)/g are small, then one could 
find g by searching through possible values of ( p  - l)/g 
and ( q  - l)/g. 

VIII. OPEN PROBLEMS 

The main motivation for using short secret exponents is 
to reduce the secret key exponentiation time. A useful 
technique for reducing the secret key exponentiation time 
is to take advantage of the knowledge of p and q (rather 
than just the product p q )  [4]. Using this technique, two 
half-sized exponentiations are performed. The first expo- 
nentiation gives the result modulo p using exponent A, = 
d mod(p  - l), and the second gives the result modulo q 
using exponent d, = d mod(q - 1). These two results can 
be combined easily using the Chinese remainder theorem 
to obtain the final result modulo pq. One could reduce 
the secret key exponentiation time further by choosing d 
so that d, and d ,  are short. An interesting open problem 
is whether there is an attack on RSA when d, and d ,  are 
short, but not equal. 

There is another open problem related to the size of 
the public exponent. Recall that the attack described in 
this paper is defeated if the public exponent is chosen to 
be at least 50% longer than the modulus pq. For some 
systems, this may be a small price to pay in order to have 
fast secret key exponentiations. An interesting question is 
whether there is an attack on RSA when the secret 
exponent is short, and the public exponent is larger than 
the modulus. 

IX. CONCLUSION 

The continued fraction algorithm can be used to find 
sufficiently short RSA secret exponents in polynomial 
time. For a typical case where e < pq,  GCD(p - l , q  - 1) 
is small, and p and q have approximately the same 
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number of bits, this algorithm will find secret exponents 
with up to approximately one-quarter as many bits as the 
modulus. 

There are ways to combat the continued fraction attack 
on RSA. If e > ( p q ) ’  ’, then the continued fraction algo- 
rithm is not guaranteed to work for any size of secret 
exponent. Also, one might choose GCD(p - 1,q - 1) to 
be large because the size of secret exponent that can be 
found is inversely proportional to GCD(p - 1, q - 1). 
However, choosing G C D ( p - l , q  -1) to be large may 
cause other problems. 

A number of improvements to the continued fraction 
attack on RSA were discussed. However, they only add a 
few more bits to the maximum size of secret exponent 
that can be found in polynomial time. As the secret 
exponent increases in size beyond this maximum, the time 
required to find the secret exponent increases exponen- 
tially. This attack cannot be extended to the normal case 

where the secret exponent is approximately the same size 
as the modulus. 
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